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ON THE STABILITY OF MOTION OF A GYROSCOPE IN GIFlBALS 

AND THE EVALUATION OF DEFLECTIONS* 

I.V. SHMELEVA 

The problem of stability of gyroscope motion is considered in the formulation in /l/. 
Liapunov function is constructed in the form of a nonlinear bundle of integrals.The 
obtained sufficient conditions of regular precession stability of a gyroscope coin- 
cide with those obtained in /l/ using the Routh theorem. Deviations from stable 
motion of the gyroscope are evaluated on the basis of the method of /2/ with allow- 
ance for the findings of /3/. 

Let the system of differential equations of perturbed motion allow the Liapunov function 
to be constructed in the quadratic form 

v = a& + a&+ * . . $ q& 
where the coefficients ai arepositive, continuous, and differentiable functions of some para- 
meter h. The relation between initial and current perturbations is assumed to beofthe form 

/2/ 
HB = h2-f; h = ma% f(h) (1) 

f(h) _;min(al(h), aa (1)~ * + -0, @)I (2) 
mar {al(h), aa (J.), . . .I a,&)) 

The domain of determination of function f(h) can be represented as a set of intervals on 
the h axis, where curves q(h) are positive and do not intersect each other. Thus the selec- 
tion of parameter h enables us to determine the maximum radius of the sphere of initial pertur- 
bations for which the moving point will not go outside the limits of the sphere of a given 
radius. 

Let a gyroscope suspended in gimbals be in a field of forces with force function u(8). We 
shall carry out the analysis in the fixed system of coordinates OXYZ whose oz axis lies 
on the axis of gimbals outer ring, and the moving system of coordinates Oxyz whose axes are 
rigidly attached to the inner gimbals ring and are the principal axes of inertia of the qyro- 
scope and the inner ring. The respective positions of axes of coordinates OXYZ and OXYZ 
can be defined by Euler's angles %,$,e, where $J is the angle of turn of the externalgimbals 
ring, % is the angle of turn of the casing in the ring, and cp is the angle of turn of the 
gyroscope relative to the system OXYZ (the angle of proper rotation). 

The equations of motion admit the first integrals 

(A + A,) P + (-4 + “Bl - C,) wa sin% 0 + C,rpJao+ % + C (cp' +$,' CO9 %)* + J*'a - 2CJ = const 

(A + BI - Ct)+'sin* % + C (cp' + 0' CDS %)eos % + C,g' f JJ1' = coast 
rp' + *' ease = eonst 

(3) 

The first of these is the energy integral and the remaining two correspond to ignorsble 
coordinates 'p and 'p. In these equations A,B =A,C and A,, S,, Cl are the principal moment of 
inertia of the gyroscope and of the inner ring, respectively, and J is the moment of inertia 
of the outer ring relative to the oz axis. 

When the constants @,,tp,', r, satisfy the equation 

(A f B, - C,)Ip,"sin%, cos%, - Cr&,'sin %,, + (au/a%),_;,= 0 (4) 

the equations of motion admit the particular solution 

6 = e*, e’=o, v=*,o’, r=ro 
which under condition %,,=% represents uniform rotation and , if 9,#0, x is the regular pre- 
cession of the gyroscope. 
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Let us consider the perturbed motion 

8 = e. + zi. e* = 2,, v = qpo’ + +, T = r. + z4 
Using the integrals of perturbed motion with terms of up to the second order /4/, we con- 

struct a Liapunov function of the form 

v = $ a,V, + .Ti B,,V,Vt 
r=I m, i=1 

(5) 

With condition (4) satisfied and parameters 

a,= 1, a2 = -21p,', ag = 2C($,'cos B. - rO) 

the expansion of function (5) in series of powers of Zi begins with second order terms to 
which the analysis can be restricted on the assumption of smallness of generated perturbations. 

We introduce the notation 

Yo = -(A 4 B, - c,) qotz jeosz e. - sina e,) + cr,lp,’ cos e. - fi~Wa~,~)~. 
d, = L2 (A -I- B, - C,) qO’ COY eO - Cr,,l sin % 
d, = J + C, + (A f B, - C,) sin2 O0 

We set &= &= O,&= h, and select the remaining parameters firnl so that equalities 

2hC=me,+2*:8,,+ k=o 
c + 4 (c ~0s e,ph + paa + 4~3,~ + 4c cos eof3%% = a 

where a is some so far undetermined quantity, are satisfied. 
The coefficients at quadratic temls of function (5) are of the form 

yn = yo + d,% Yaa = A -I- A,, ~33 = d, + d,% Y&c = 11 
Y,$ = d,d&, ylr = qo’ sin eo, Ysa = 0 

(6) 

We select the quantity a so that the equality Yss=Ytr be satisfied. The quadratic form 
with coefficients (6) is positive definite when conditions 

are satisfied. 
In the case of uniform rotation of the gyroscope the sufficient condition of that motion 

(7) is of the form 
Yo > 0, A> - lid, (8) 

and is the same as the condition obtained in /1,4,5/. When the gyroscope precessionis regular, 
conditions (7) coincide with the necessary and sufficient stability conditions obtained in /I/ 
using the Routh theorem. 

Let us estimate the deviations of the gyroscope perturbed motion. To be able to compare 
deviations with respect to various coordinates it is necessary to introduce dimensionlesspara- 
meters 

9*' = &I', l& = Stp', Q = ST, t, = t/s (9) 
8 = max {I 0@’ I-1, I+& I-1, 1 r, I-‘) 

The form of equations of motion and integrals (3) is not affected by the substitution of 
function u,= S*U, for the force function U. Part of coefficients (6) expressed in dimension- 
less parameters acquire new values, but for simplicity of notation we retain their previous 
symbols. 

In the case of uniform rotation of the gyroscope coefficients (6) can be written as 

Yn = YOP I'sa = 1’3s = I’M = A + A,, yia = I’M = VW = 0 
h = da-2 (A + A,- da) 

The lowest and the highest values of these yield an estimate of deviation of the gyro- 
scope motion from its steady motion in the form (1). 

When the gyroscope precession is uniform, we reduce the quadratic form with coefficients 
(6), expressed in dimensionless parameters (9), to a diagonal form with coefficients 

(Il.8 = '1, (Yn + Yss T I(Y11 - Yss)* -t- 4 (YG + Y11E)l"3 
a, = A + Al, a, = Yss 

Since the inequalities al(il)<a,(h)<as(k) are satisfied, it is possible to write function 
(21 as foflows: 

(13) 
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in the form 

under condition 

in the form 

A +A,<'/,&+&) 

f(h)=a,(h)la*(h), &?<A<&; f(h)=A$A,ia,(h), b>l, 

where h, is the solution of equation a1 (X) = ‘4 + A,), and under condition 

A + A, > as (&J 
in the form 

f (h) = a, W/A + A,, h, < a < a,; f (a) = al mk (a), a > a2 

(11) 

(12) 

(13) 

where h, is the solution of equation as(h)=A+AJ. 
Let us evaluate the extremum of function (11). Equation f'(h)=0 can be reduced to the 

form 
- h (d? + d,W& + d?) d, + (~0 - d,)(y,d, - d,*) d, + W,' + W ?,r2 = 0 

whose solution h, is the value for-which function (11) reaches its maximum value. 

It is now possible to obtain the value of coefficient h which determines the relation 

between the radii of initial and current perturbation spheres using formula (1) andconditions 

(lo), (12), and (13), respectively, 

h = f (a,) (14) 

h = a, (ada, (kd, a, < a, < a,; h = (A + 4Y44, a, > a, (15) 

h = (II wA + A,. a, < a, < a,; h = aI (uk m, a, > b (16) 

It is, thus, possible to obtain in each of the considered cases an estimateofdeviations 

of perturbed motion of a gyroscope in gimbals from the stable one. 
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